Making SEDs (2020) – L.M. Rebull

We have brightness measurements of many sources in many bands. We would like to make spectral energy distributions (SEDs) of the optical through FIR bands. We need to convert all the brightnesses into energy densities because an SED is, well, an *energy* distribution. The unit conversions are the hairy part, and in order to really understand all the steps, I've broken it into something uncharacteristically (for me) cookbook-like. Watch your units. You *will* get this wrong the first time you do it, and it will be a units issue, and it will not be off by just a little but by factors of many orders of magnitude, like 10¹⁰.

The goal here: prove to yourself that you can make at least 5 SEDs. Note that I'm not expecting you to make all the SEDs we will ever need ... I have code that does it really fast. Focus on learning how to do this rather than making a tool that will enable you to do this on an industrial scale. (I gotchu for the industrial scale.)

Magnitude = brightness, no explicit units (other than "magnitudes").

Flux = energy per area per unit of time (energy/area/time).

Analogy: Watching cars under an overpass; flux is like how many cars per lane per second.

Luminosity = energy per unit of time (energy/time).

Analogy: Luminosity is like the total number of cars per sec.

Flux Density = energy per unit of time per area per photon (energy/time/Hz or energy/time/m, where the "per Hz" or "per

m" is "per photon frequency" or "per photon wavelength."

Analogy: Flux Density is like how many red cars there are per sec per lane.

Wavelength is represented by λ , and frequency is represented by ν . (Also, $\lambda \nu = c$, where c is the speed of light. Watch your units; if your wavelength is in microns, the speed of light should not be in km/s.)

Concept	Task	Space for your notes
What do	1. We have measurements of the brightness for many bands	
you have?	for many objects. For one object (probably the first one in the	
	spreadsheet, but your choice), look at its line in the spreadsheet.	
	Find the columns with magnitudes. Not all magnitudes will be	
	present for each object. Identify which magnitudes you have.	
	The column headers for the brightness in magnitudes will look	
	like "umag" with different characters in the "u" position to	

	indicate the bandpass, and "mag" to indicate magnitude. If the	
	column neader includes merr, data fumber is the error in the	
	magnitude. A -9 means no data (not a really bright	
	measurement). Columns measuring brightness in flux density	
	units have headings that include "flux" and are already in Jy (or	
	some variant thereof, like microJanskys μJy); "ferr" is error in	
	flux density.	
What do	2. We want energy densities for each object for each band so	
you need?	that we can make an SED for each object. You need to	
	manipulate each magnitude measurement to calculate the	
	energy density at each wavelength (also called band or	
	bandpass). The columns with brightness measures that are	
	already in Jy need some manipulation as well, but not nearly as	
	much. To do this, I suggest you insert additional columns right by	
	the magnitude column to calculate each step. <i>Use as many</i>	
	columns as you need, and place them wherever you want, in order	
	to get the job done. The first calculation will likely take several	
	columns. After you get the hang of it (and debug your	
	calculations). I bet you can do it in just one additional column	
	per band.	
Convert all	3. Convert magnitudes to flux densities . Use the equation	
mags to flux	$F=F_{Vega}/10^{(magnitude/2.5)}$. F_{Vega} is the zero point flux density	
densities, F _v	for each wavelength. The units of F_{Vega} should be the same as you	
, .	want to get out – if you want Jy, then F_{Vega} should be in Jy (or if	
	you want ulv, then F_{Vega} should be in ulv). Because the brightness	
	(flux density) of Vega (F_{Vega}) is different for each band, this	
	number is different for each waveband. HOWEVER , watch for AB	
	magnitudes (as we have for PanSTARRS) there, the zeropoint is	
	not F _{Vega} , but 3631 Jy. Check the Excel file wavelengths.xlsx for	
	information customized for our project, or the wiki page "Central	
	wavelengths and zero points" to get these numbers for in more	
	generic cases:	

	http://coolwiki.ipac.caltech.edu/index.php/Central_wavelengths	
	_and_zero_points	
	Extra credit: do the unWISE brightnesses too. They come in	
	nanoMaggys (nMgy). Vega mags = 22.5 - 2.5 * log ₁₀ (flux in nMgy)	
	Convert these to Vega mags and then to Jy.	
Change	4. Convert flux density to cgs units. You have some columns	
units of F_{ν} to	where you've calculated the flux densities from the magnitudes,	
cgs units	but you have other columns that started in flux densities. You	
	need to convert all of these numbers that are in Jy (Janskys) or	
	some varietal thereof (mJy, μ Jy) to ergs/sec/cm ² /Hz. Caution :	
	some of these numbers might be in μ Jy or mJy, not Jy.	
	1 Jansky = 10^{-23} ergs/s/cm ² /Hz. You can figure out how to	
	convert this to Watts/m ² /Hz (e.g., mks units rather than cgs) if	
	you want, but be consistent throughout otherwise the units	
	won't work. My examples here are all in cgs units (because	
	UChicago taught me this way; I have no better excuse).	
Change	5. Another conversion is needed because the units aren't quite	
F_{ν} into F_{λ}	right yet. We have F_{ν} ("per frequency" meaning "per Hz") and	
	we need F $_{\lambda}$ ("per wavelength" meaning "per cm"). To convert F $_{\nu}$	
	into F_{λ} , multiply by c over lambda squared: $F_{\lambda} = F_{\nu}$ (c/ λ^2)	
	(To derive this, to show why it's not just c over lambda, you need	
	calculus. $\lambda v = c$ but $v = c/\lambda$ and you need to get it into	
	differentials to get "per frequency" or "per Hz", but d/dx(1/x) is	
	$1/x^2$ so it's c/ λ^2 .) The speed of light, c, is $3x10^{10}$ cm/sec. λ also	
	needs to be in cm for the units to work out. This number is the	
	central wavelength, sometimes called the effective wavelength,	
	e.g., the effective center of the filter. See the wiki page "Central	
	wavelengths and zero points" to get these numbers. If you have	
	this number in microns, you have to convert this number to cm.	
	(Recall that 1 μ m = 10 ⁻⁴ cm).	

Calculate	6. What we actually need to plot is energy density . What we	
λF_{λ}	have right now is still flux density (just in different units, now	
	F_{λ} , compared to when we started).	
	Energy density is λF_{λ} . To go from ergs/sec/cm ² /cm (where	
	that last "per cm" is "per photon's wavelength"), we need to	
	multiply by the photon's wavelength to get ergs/sec/cm ² . This	
	number will, of course, be different for each band – it will be the	
	filter's central wavelength. (Note for completeness: If you think	
	in frequency, as some radio astronomers do, you could also have	
	skipped the prior step and calculated and plotted νF_{ν} . However,	
	I don't know the frequencies of the various bandpasses off the	
	top of my head but I do know their wavelengths. That's why	
	we're going with λF_{λ} .)	
Take the log	7. Now you have the energy density of this particular	
	wavelength (λ F $_{\lambda}$). We want to plot the log of this number, so	
	take the log of it (log λ F $_{\lambda}$). This is what we will put on the y-axis	
	for the SEDs.	
Identify the	8. The x-axis for the SEDs is the log of the wavelength for the	
wavelength	magnitude you just worked above. Identify the wavelength in	
	microns and take the log of it to get ready for plotting. (Others in	
	the past have made another tab in the spreadsheet just for	
	wavelengths in order to force Excel to plot, but do what you need	
	to in order to get the job done.)	
	(Note for completeness: (1) You might ask why not plot λ in cm	
	since we've been working in cm so far. You can of course do this.	
	But I remember the wavelengths of the bandpasses in microns,	
	and in order to read a wavelength off the plot, one already has to	
	think in log space, so that's why we're plotting wavelength in	
	microns – it just makes reading the plot a little easier IMHO. Do	
	whatever you want to get the job done. (2) You could also plot	
	log vF $_{\nu}$ against log v, but see above re: thinking in wavelength	
	not frequency. Also, the shape of the blackbody function against	

	λ is what we've been playing with thus far; plotting against v	
	flips around the shape of the blackbody function unless you plot	
	with v increasing to the left Again, do what you want to get the	
	job done, but I suspect you will want to plot λ F $_{\lambda}$ against λ ,	
	especially if you want your plot to closely match mine or your	
	neighbor's.)	
Do it again!	9. Get λF_{λ} for every band for that object! Repeat steps 3	
	through 8 for each magnitude that you have. Repeat steps 5	
	through 8 for each flux density that you have.	
Make the	10. Fight with Excel to get it to plot log λF_{λ} on the y-axis and	
plot!	$\log \lambda$ on the x-axis. I will be of very little help here because I don't	
	plot very often in Excel. You will need something it calls "scatter	
	plots" (as opposed to, say, pie charts or histograms). You may	
	wish to hide un-necessary columns, leaving only the log λ F $_{\lambda}$	
	column for the y-axis.	
Repeat for	11. Make SEDs for the other objects! "Fill down" to complete	
another	the calculations for additional objects. Plots don't come so	
object	automatically, unfortunately. Watch for "no data" errors – if	
	there are no data at that band, you can't put it in the SED.	

The first SED you make takes a long time, but then more or less the rest come along for free. It gets easier to plot if you work in a programming language in which, honestly, you can make plots more easily than in Excel. I program in IDL (if you want to learn a language, pick Python, not IDL) and I can make SEDs for >4000 objects in less than 2 minutes. But my first one took a long time.