Programming with Python 1

Python for Non-programmers
Babar Ali

Topics

¢ Computer Programs
»What is a program?
»Why program?
» Not useful programming
* Some Introductory Concepts:
» Components of a program
» Memory: Variables and Disks
» Current working directory

* Python, Anaconda, Spyder

PROGRAMS

What is a program?

6 a: a plan for the programming of a mechanism (as a
computer)

b : a sequence of coded instructions that can be inserted into
a mechanism (as a computer)

C : a sequence of coded instructions (as genes or behavioral
responses) that is part of an organism

Merriam-Webster online dictionary |

What is a program?

S =T

’

' READ TEMFERATURE SETTING “T”
ON THERMOS TAT BOX

|

. |
'

4 a4

|

v

MEATD K N <

QP TIONAL DELAYY

READ ACTUAL ROOM TEMPERATURE R”
ITROM THERMOVE TER OR DTHER SENSOR

‘ES

NO ~ ISTLESS ™
_ ‘..-" THAN B
(R OO . OREQUAL
100 COLD) ~ TOR> .~

S HEATER QF)

(ROCA
TOOHOT

4

 —— e e e - -

(OFPTIONAL DELAY)

What is a program?

* [ts how you tell a computer what you would
ike it (computer) to do for you

thread, module winmine
3B0S 34530001| CMP EAX,DWORD PTR DS: [18@5334]

8930 64510001| MOY DWORD PTR DS:[16@51641,EDI
75 8C JNZ SHORT winmine.B10836R4

380D 38530001 CHP ECX,DUORD FTR DS: [16053381
. 75 84 winmine. 81063604
JeR B4
vEB B2 JHE 'SHORT winmine. 010836R6
Senee PUsH e
7 B2 sasasenr | bRo PTR Ds: {10653341, EA 16853341 = map-width
2900 38530801 MOU DWORD PTR DS: [18053381,ECK (16853381 = map-height
B2 TERRFEPE. | LALL winnine-00B0BEDE reset map memory
A op1 |1iou"ERK, DURD PTR 0S: [10086A41
8330 60510001 | 110U DU 21, E0]
a 001 | 1oU DIORD P18 oE126). Ak 11005330 = nunber of nines
FF35 34530001 PUSH DUORD PTR 55! { 16653543 push map-width to the sta
ES8 6E@20000 CALL winmine.@1083940 | mine width = randomized uldth 8 - mapwidth-11
FF35 38530601 PUSH DUORD PTR DS: (10853381 push map-height to the sta
] MU ESI,EAX
46 INC ESI nine width = mine width +
ES 60620000 | CALL winmine.@1003940 nine heisht = randonized helghv 8 - napheight-11
4 INC EAX nine height = mine heig
MOU ECX, EAX
CIE1 65 SHL_ECX.5 cell address = @x100534@ + 32 * height + width
F63431 4053001 TEST BYTE PTR DSt (ECKsES1410053407,80 | test iF cell position is already a mine
el JNZ SHORT winnine. B16236C if S0, re-do this iteration
803430 4053001 LEA_EAX, DWORD PTR DS: [EAX+ESI+10053481
OR BYTE PTR DS: [EAX1,50 set cell address of mine to mine (89)
FFOD 30530001 DEC DWORD PTR DS: [10053301 decrease the number of mines |
~75 C2 JNZ SHORT winning. B10B36C, repeat if there are nines left

8B00 38530001

C705 9a5aa6a1 | MOU DUl RD PTR DS [1005088] 1
w

E8 26FDFFFF |CALL winmine.@188346R -

53 PUSH [H‘ g1

%g BSE2FFFF CRLL U nmine.81001950 winmine.

SE

SB POP EBX

c3 RETN

53 PUSH EBX v
2001

e At the fundamental (lowest) level, computers
speak machine language

Machine language is ...

» Specific to the computer architecture.
* Intel, x86 IBM, powerpc

» Difficult for (most) humans.

» Really only useful for the most fundamental

NASM code to print “hello world”

_start:

message:

global

section

_start

.text

; write(l, message, 13)

mov
mov
mov
mov
int

eax, 4

ebx, 1

ecx, message
edx, 13

80h

; exit(0)

mov
mov
int

db

eax, 1
ebx,
80h

"Hello, World", 10

; system call 4 is write

file handle 1 is stdout

; address of string to output
; number of bytes

; system call 1 is exit
+ we want return code 0

Normal Humans Need Translators

“High-level programming languages” invented
to make it easier to talk to machines.

But, at the expense of efficiency, and some

other aspects — not really our concern.

High-level languages:

» Provide a bridge between humans and computer’s
preferred language level

» Are not specific to machine architecture
» Require a “compiler”

Role of Compiler

|

if (sales 2> 5000

bonus = 250; ,A
:}else { “'0
bonus = 0; JL(][]_
- 1101

«11101

101101,
01010107 ¢
‘ 1110101 ¢
0101101
0111101
1001011

L‘>‘ﬁ'ut¢:.r;:~

10

Role of Compiler

if {gales > 5000

else 1

bonus = 0;101
1101
11101
1001011

That’s You

}

T, hilo
lolloh L.’\tv \.l]tbu..
0101010% ¢\
1110101 e
0101101
0111101
1001011

That’s Your

“Hello World” in C

/* Hello World program */
#include<stdio.h>
main()

; printf("Hello World");

“Hello World” in C

But, the instructions must be
“compiled” (read translated) from C-language
to assembler

Here’s one way:
gcc -0 helloworld -ansi helloworld.c

As long as ‘gcc” compiler exists on a machine,
you can write and run C-code on it

The resulting assembly language instruction
will differ from machine to machine

Two flavors of high-level languages

Compiled

Require code to be
compiled to run

Examples: C, C++,
FORTRAN, ...

Pros: Faster, more
control, more flexible

Cons: Harder, and
compiling gets
cumbersome

Scripting

Interpreter/compiler is
“always ON” — just run
It.

Examples: Python, Perl

Pros: Easier to use,
More “portable”

Cons: SLOOWWW, less
flexibility

“Hello World” in Python

print “Hello world”

Comparison

C

Python

* Hello World program *
{#include<stdio.ﬁ> 5 /
main()

printf("Hello World");

e Then

gcc -o helloworld -ansi helloworld.c

e Then
helloworld

print “Hello World”

Writing Programs

High-level programs and scripts are simply
written as ASCII (a.k.a text) files.

Simple programs may only use one file for all
of their instructions.

E.g. print “Hello World”

Complex programs rely on system engineering
concepts to organize 100s or 1000s+ files.

More on Writing Programs

* You can use simple text editors: vi, textedit
(MacOS), notepad (Windows), emacs, etc.

“Then on a lark, | made the foolish mistake
of writing a program that did what | did.”

18

Spyder

Software specifically designed to help you
write programes.

» Will provide automatic checks for the
fundamentals: E.g. parenthesis, typos

» Use color-coding to highlight specific types or
blocks of code.

» Will automatically perform basics like indentation

»And ... much, much more (to be covered in
Spyder)

How do you execute, run programs?

* First, the format that is ready for execution is
called an executable.
» An executable is usually a compiled (remember

translated) version of the program for compiled
languages.

»The equivalent for scripting languages is simply
the script itself.

Running programs, cont.

* Many ways to start:
»Command line.
» Double click.
»Tap (an app on a ipod, smart phone)

»Issue the proper command in the development
environment.

» Instructed by other programs at the basic level.
» And, many more.

Jargon

Code
» usually refers to instructions for a compiled or
scripting computer language.
Script
» usually refers to scripting language code. "No,.you weren't dowloaded.
Program

» usually refers to compiled language code, but also
script and code

Run = Execute

» Have the computer carry out the instructions in your
code

Executable

» Format in which your code is able to run. Script for
scripting language and translated assembly language
code for compiled language.

22

More Jargon

* Bug
» A fault in the computer code. As simple as a typo to as complex as
fault in programming logic
* Debug (de-bug)

» The process by which you identify and remove the bugs. Or, the
command to do so.

e Portable

» Able to run on many types of operating system + machine architecture
combination. 100% portability is a myth.

Yet More Jargon

Function ... in programming context.

» A basic programming unit. You write a function to do one thing
(usually).

Library ... in programming context.

» An organized collection of programes, i. e. functions that is
(usually) focused on a specific topic.

» Example: CFITSIO is a set of C-language functions devoted to
FITS format input and output calls.

App
> An executable

Comment

» Line(s) in the code that the compiler or interpreter (for scripts)
skips and are meant only for humans.

Using Programs

* Examples:

» Manipulate and use data that are tedious or
impossible to do by hand (on a calculator, say).

» Minimize errors: Computers are good at math
(intel PENTINUM issues not withstanding).

» Repeat the same operation many times for a given
star on a multiple stars

More Examples

Read an APT output table file into memory.

Write a DS9 region file using a table of either (x,y) or
(ra,dec) positions and ID.

Read ASCII format data table.
Write ASCII format data table.
Merge photometry tables.

Create 2-dimensional plots of various types: scatter
plots, line plots, histograms. These plots may have
multiple data sets on them.

Save plots to a JPG, PNG or similar graphic format file.

Not Useful Programming

* Obviously, anything that does not involve
computers.

* Otherwise, few instances when dealing with
computers do not benefit from programming:

» Writing large chunks of text such as a novel, unless
the text can be auto-generated.

» Anything that requires interactivity (web
browsing, computer games)

“Wow, I've never met an astronomer before.”

INTRODUCTORY CONCEPTS

The basics

Programs are organized series of instructions for
the computer that:

»use variables and disks to hold data in memory
»access computer’s CPU to process data
»allow users to pass or manipulate data
»are built on functions and libraries of functions

A simple program

* Typically,

» Write a function to do a fundamental
manipulation or operation.
* We will skip this for now

» Write an master program to call and execute
functions in a set order or logic.

* Most of your programs should fall in this
category

What Beginners Do (and its okay)

* Typically,

» Write a function to do a fundamental
manipulation or operation.
* We will skip this for now

» Write an master program to call and execute all
instruction in a set order or logic.

* Most of your programs should fall in this
category

31

Adding complexity

Users are prompted for input.
Read data, instructions from a separate file
Execute functions based on conditions.

Do many, many, many things instead of a
single one.

Incorporate Graphical User Interfaces (GUIs).

Won’t Do In This Series

* Users are prompted for input.
* Read data, instructions from a separate file
e Execute functions based on conditions.

* Do-many-manymany-thingsinstead-ofa
strgle-one-
* lncorpeorate GraphicalUsertnterfaces{GUls)

Good practices

Comment often and be verbose. Imagine talking to
yourself 5+ years from writing the code.

Test and debug as much as possible.

If using the same operation over and over, define a
function.

Define and use naming conventions for variables, files.

Keep the logic simple and easily readable even at the
expense of efficiency.

Organize code in logical blocks that are clearly
separated.

Memory

There are Two types:
» Random Access Memory (RAM)

» Disk/physical Storage.

RAM is “live” memory only
available when the program is
executing (running).

Disks store information using
some semi-permanent physical
mechanism that is not dependent
on power.

Memory and programs

Programs rely on RAM for faster execution.
Programs rely on Disks for permanent storage.

RAM is active when the program is running.

RAM is lost when you exit the programming
environment.

Stored files/data on disk may be accessed inside
and outside of programs.

36

Variables in memory

e Variables, in computer jargon, are elements of a

programming language that deal with RAM to
hold data during execution.

* There are many different types of variables

ranging from byte (least memory) to quadruple
precision arrays (most memory) to store precise
numerical values.

* Good practice:

minimize memory consumption = use variable types
appropriate for the job.

Disks

Programs use physical disk space to store data
and/or results in files.

Accessing disks is 100s-1000s of times slower
than accessing RAM.

It’s a bad idea to use files instead of variables
for memory during execution.

It’s a bad idea to use variables instead of files
to store final results — variables cease to exist
as soon as the program terminates.

Exercise

NGC 281 Level 1 Herschel/PACS frames for the
blue channel comprises about 150,000 images.

Each image has 2048 pixels (70 micron data).
Each pixel data is 64-bits = 8 Bytes in HIPE.

Calculate the size (in Gigabytes) of the variable in
RAM that holds the level 1 cube.

Calculate the size of the FITS files on disk that

holds the data, assuming that
* Only 16-bits = 2 bytes are used for storage.
* FITS format compresses data by a factor of 2.

39

Current Working Directory

When reading or writing (storing) files, the
computer reads, writes to a given folder.

This folder is the “current working directory”.

Scripting or compiling languages have different
assumptions for where the “current working
directory” lies.

Default is (usually) where you started executing
the program.

Best practice: Define it explicitly in your program.

41

Why Python?

* Python is a scripting language:
* Easier to program than compiling languages.
* Example:

Define the variable ‘@’ and set it to contain the value 10.2
in memory

float a; In C: First declare the
a=10.2; variable, then useit.

a=10.2 In Python: Simply use it.

Which Python?

* Barebones python is not a practical choice.
* A pre-packaged distribution solves a number
of issues:

» Useful libraries are already included and compiled.
»\Version conflicts between libraries are avoided.

Anaconda

http://continuum.io/downloads.html

Its free.

Windows, MacQOS, and Linux support.
numpy, scipy libraries included.
plotting libraries included.

Many (not all) useful astronomy libraries are
included.

2l A & LHk @ 8O A 5 % 8 > 0
Editor - /Vol I
@ 2 MKWISE_ru...

MK_standards,
@ ° MKWISE_util...

1 @ @ MKWISE_plo...

='| Source | Console 3| Object

3 Created on Fri May 16 14:03:56 2014

@author: babar

Python 2.7.4 |Anaconda 1.5.1 (x86_64)| (default, May 9 2013, 12:12:60)

Object inspector

00

i= Options

v 8

No documentation available

[IGBjectinspectory| Variable explorer

Console

File explorer

T

00:00:18

[GCC 4.8.1 (Apple Inc. build 5493)] on darwin
Type “help”, “copyright", "credits" or "license” for more information.

Imported NumPy 1.8.8, SciPy 0.12.8, Matplotlib 1.2.1

Type “scientific" for more details.
>>>

Permissions: RW

End-of-lines: LF

Internal console -.ﬁja

Encoding: UTF-8 Line: 8 Column: 1 Memory: 27 %

45

