Programming with Python 4

Python for non-programmers
Babar Al

Topics

Input from text files

Output to text files and screen.

Try, except blocks and error handling
Functions & Libraries

INPUT

Files on disk

 We will focus on ASCII (as opposed to binary) files here.

* Libraries (such as numpy) add significantly easier to use
functions to handle files than core python.
e Tryto use them.
* The following lines of code show one way to read the file. We
will expand on each command.

Basic code:

>>> file = “/Users/babar/file.txt” # Tell python which file.

>>> ou = open(file,”r”) # Have python “open” the file for access.
>>> |ine=ou.readline() # Read the first line from our file.

>>> ou.close() # Close the file. No more access.

>>> print line # Print what we just read.

A detailed look

>>> file = “/Users/babar/file.txt”

* The string variable ‘file’ is used to define the full directory path and name
of the ASCII text file.

* If you don’t tell python / spyder the full pathname, it will use the current
working directory.

* Since, you may not always remember or wish to use a directory different
than the current working directory, it is best

* Always define the full path name so there is no ambiguity.

* |If you plan to use the same directory for access to many files and for
output, also define the directory in a separate variable.

>>> dirname = “/Users/babar/”
>>> filel = dirname+“Jphot.txt”
>>> file2 = dirname+“Kphot.txt”

A detailed look (cont.)

>>> ou = open(file,”r”)

This line calls a core python function ‘open’ and gives it two arguments:
» “file” is the variable that is pointing to the file we wish to use.
» “r” tells python to read from the file.

You can specify the file name directly instead of first defining it as a string.
* But, take care to put quotes around the name.

Here is what else you can tell python to do with files instead of “r”ead:

» “w” tells python you wish to write to a file. If the file already exists, it will be
deleted first and recreated. So, be careful. Its an easy mistake to wipe out
existing file.

» “a” tells python to append to an existing file.

Once opened, the file will stay opened until closed.

The variable ‘ou’ contains the link to the opened file. You need it to
access the linked file.

o)
I

What to do with ‘line’?

 Recall: we stored the first line in a variable called ‘line’.

* Thisis a string variable and can be manipulated just like any
other string variables.

* Forfile I/O in particular, the following provide some useful
functions:

>>> |ine.strip() # Remove the trailing ‘\n’ end of line character as well as spaces.
>>> line.split() # Split the contents of the line using space ‘ “ as the delimiter.
>>> line.split(,’) # Same as above, except use comma ‘,” as delimiter.

Example:
>>> |line = “100 34.2345 -5.23441” # Thisis our line.
>>> line.split() # produces the following output

[100’, 34.2345’, -5.2344’, ‘1’]
>>> # A string vector with four values — the original 4 numbers in the line separated by
space ‘

For more help

* http://pythondastronomers.github.io/files/
asciifiles.html

A more complete example

 Read and parse a text file containing 5 columns and two header
line.

>>> # Our input file looks like this:

>>>#1D, ra, dec, flux, comments

>>># , (deg), (deg), (mly),

>>>#1,35.2345 ,-5.1234 , 100.0, There is a bright filament nearby.
>>>#2,35.5436 ,-5.5567 , 120.0,

>>>#3,35.8934 ,-5.9832 , 150.0, Part of a binary pair.
>>>H#4,36.52 ,-6.1654 , 102.0, Value is from Scott.
>>> ju=open(myFile,”r”)

>>> headerl=ou.readline()

>>> header2=ou.readline()

>>>id =]

>>>ra =]

>>> dec = []

>>> flux =[]

>>> comment = []

>>> line=ou.readline()

Example continued.

“un

>>> while linel="":

>>>
>>>
>>>
>>>
>>>
>>>
>>>

words = line.split(‘,")
id.append(int(words[0]))
ra.append(float(words[1]))
dec.append(float(words[2]))
flux.append(float(words[3]))
comment.append(words[4])
line=iu.readline()

>>> ju.close()

Using numpy

* numpy provides two functions to read ASCII files. We will
use genfromtxt

* Functions automatically perform a number of the steps.

* This makes programming simpler to understand and less
prone to errors.

Our complete example, now in numpy:

>>>import numpy as np

>>> data = np.genfromtxt(myFile, dtype=(‘i",’f’,’f’,'f’,’S20’),\
names="id,ra,dec,flux,comment”, \
skip_header=3, usecols=(0,1,2,3,4),delimiter=",")

A closer look at numpy genfromtxt

myfFile is the name of the file to read from.

dtype specifies the type of data. One per column,
in parenthesis and quotes, as shown.

names tells python what name to use for each

column.
e NOTE: Not related to names in file itself.

skip _header = tells how many header lines to
skip.

usecols says read data from these columns.
delimiter= tells what separates data columns

The output

data contains data on all columns and
accessed by the assigned name.

C

C
C
C
C

ata
ata
ata
ata
ata

:Ilidll:
""ra"][0] # The first element of ra

All elements of id

0:2] # The first & 2" element

:Ildecll:
Mflux"][:] # Al
'comments"]

elements of flux

The output (cont.)

* |f names was omitted during the call, the
default name of the columns is used.
»The default name is 'f#', where # stands for O, 1, 2,
3....

 The extracted columns in the output are
numpy arrays of the type specified in dtype.

* For example, data["id"] is a numpy integer array.

What else can you do with genfromtxt?

comment="#"

autostrip=0
autostrip=1

skip_footer=

or

Treat the row/line as a comment If the line begins with
whatever character is specified in quotes. In this case, '#'.

Whether to strip white spaces from the variables. 1=yes,
O=no.

The number of lines to skip at the end of the file.

15

OUTPUT

Output is just as easy

We have already seen
print
Which prints to the screen.
Now we will use it to print to a file.

Basic code:

>>> file = “/Users/babar/output.txt” # Tell python which file.

>>> ou = open(file,”w”) # Have python “open” the file for access.
>>> print >>ou, "Hello File" # Read the first line from our file.

>>> ou.close() # Close the file. No more access.

17

A detailed look

>>> file = “/Users/babar/output.txt”

e As forinput, the string variable ‘file’ is used to define the full
directory path and name of the ASCII text file.

* |f you don’t tell python / spyder the full pathname, it will use the
current working directory.

* Since, you may not always remember or wish to use a directory
different than the current working directory, it is best

* Always define the full path name so there is no ambiguity.

A detailed look (cont.)

>>> ou = open(file,”w”)

This line calls a core python function ‘open’ and gives it two
arguments:

»> “file” is the variable that is pointing to the file we wish to use.
> “w” tells python to write to the file.

* You can specify the file name directly instead of first defining it as a
string.
e But, take care to put quotes around the name.
* You can also use:

» “a” to append to an existing file.
* Once opened, the file will stay opened until closed.

 The variable ‘ou’ contains the link to the opened file. You need it to
access the linked file.

Writing to the file

>>> print >>ou, "Hello File"

* Use the normal python print statement to
write to the file.

* The >>ou construct added to the print
simply tells it to redirect the result of the
printing to ou.

e All formatting rules for printing apply here as
well.

Full example

>>> # Using data read earlier in variable data with numpy’s genfromtxt
>>> ou=open(myOutputFile,”w”)
>>> print >>ou, “This is a header line”
>>> print >>ou, “This is another header line”
>>> nlines = len(data[“id”])
>>> for i in range(nlines):
print >>ou, “%4i, %8.3f, %8.3f, %8.3f, %s” % (data[“id”][i], data[“ra”][i], \
data[“dec”][i], data[“flux”][i], data[“comment”][i])
>>> ou.close()

Using numpy:

>>> import numpy as np
>>> np.savetxt(myOutputFile,data,fmt="“%4i %8.3f %8.3f %8.3f %s”,delimiter=“,",\
header=“This is first line\nThis is 2" line”, comments="“#")

CATCHING ERRORS

Try and if fail then do something else

>>> # python allows a way to catch errors and/or problems:
>>> try:
commandl # Run some commands.
command?
>>> except Exception, e:
print “Your commands did not work. Here is why, maybe”
print e.message

The try, except syntax allows you to test the execution of any command. If any of the
commands in the try: block generates a python error, then the statements under the
except: block are executed.

Generally, you put “safe” print statements in the except block to let you figure out
what may have happened, but there are always exceptions.
YES: if you have an error in the except block, you may crash the program.

FUNCTIONS

The basic building blocks of code

* Functions:
» Execute a set of instructions when called.
» Tidy up code by modularizing it.

»Should always be used when the same algorithms
(with slight parameter differences) are repeated.

* Alibraryis a set of themed functions. E.g.
numpy for numerics-related python functions

def:ining Functions.

>>> # Creating a function is easy.

>>> def myFunction(input,optionA=1,optionB=2):
commandl # Run some commands.
command?2
return result

The def statement tell python we are defining a function.

The name of the function follows def call.

Mandatory input parameters are specified without the = syntax.

Optional parameters use the = syntax, where the value to the right of = is the default
value, if no other value is specified.

Commands are indented.

The return statement returns the result. Please return only one variable or value. We
will encounter how to return multiple values later.

A simple example.

>>> # A function to perform.
>>> def myMathTool(a,b,operation="+"
if operation=="+":
result = a+b
elif operation=
result = a-b
elif operation==
result = a*b
elif operation=="/":
if b!=0.:
result = a-b
else:
print “I will not divide by 0. You should know better”
print “returned value is 0”
result =0
else:
print “Operation not understood “+operation
print “returned value is 0”
result =0
return result

o,
- - .

Uy,

Executing functions

* |nspyder:
» Read or edit your function in the editor,
» Then choose ‘Run’ to define it.

¢ Command line python
» execfile(“/path/fileWithFunction.py”) defines the function.

e simply call the function by its name and the
parameters, if needed.

>>> # Creating a function is easy.
>>> myMathTool(10.,20.,0operation="/")
>>> ¢ = myMathTool(10.,201.,operation="*")

IPAC ASCII TABLE EXAMPLE

IPAC tables

__ H photometric uncertainty of the associated 2MASS A11-Sky PSC source

k_m_2mass (mag)

___ Ks magnitude entry of the associated 2MASS Al1-Sky PSC source

k_msig_2mass (mag)

__ Ks photometric uncertainty of the associated 2MASS All-Sky PSC source

angle (deg)

___ Position Angle in degree.

dist (arcsec)

Distance between the target position and each source in arcsec.

designation|

char|

|

null|
J853530.49-051529.3
J0853539.34-051636.0
J0853452.59-851655.2
J853518.81-051729.1
J853525.87-051831.7
J853537.20-051710.1
J0853450.40-051604.0
J853518.52-051338.3
J853537.92-851701.5
J0853445.97-051710.3
J0853540.20-051729.0
J853459.11-051658.4
J853458.21-051628.6
J853504.99-051437.0
J853512.38-051448.6
J0853458.97-051644.0
J853506.03-051511.1
J853504.87-051356.1
J853514.83-051346.8
JB853506.04-051502.0
J853546.41-851655.1
JB853512.56-051633.3
J853506.13-051424.7
JB853505.20-051450.2
J853532.44-051840.1
J853504.58-051427.8
JB853511.55-051430.7

ra| dec| sigra| sigdec| sigradec| wlmpro|wlsigmpro| wlsnr| wlrchi2| w2mpro|w2sigmpro | w2snr| w2rchi2| w3mpro|w3s]
double| double| double| double] double| double| double| double] double| double| double| double| double| double| [

deg | deg| arcsec| arcsec| arcsec| mag | mag | | | mag | mag | | | mag |

null| null]| null| null| null| null| null| null| null| null| null| null| null| null|
83.8770684 -5.2581562 1.8523 1.7555 -0.9508 8.364 null 1.8 8.591e+0@ 7.635 9.503 2.2 1.112e+01 -3.245
83.9139232 -5.2766884 0.0699 0.0666 -0.0292 9.817 0.023 46.8 1.689e+02 9.145 0.024 44.8 1.113e+02 4.037
83.7191573 -5.2820024 0.0670 0.0707 -0.0037 12.444 0.030 35.8 6.366e+01 12.448 0.118 9.2 1.032e+01 5.788
83.8283970 -5.2914413 0.0253 0.0252 -0.0109 6.032 0.042 25.9 5.246e+00 5.323 9.031 34.5 2.014e+00 1.727
83.8578189 -5.3088160 ©.1755 ©.1810 -0.0437 9.952 0.070 15.5 9.229e+00 9.328 0.080 13.6 6.816e+00 null
83.9050309 -5.2861632 0.0734 0.0744 -0.0485 7.654 0.037 29.1 1.334e+02 7.027 0.025 43.1 2.405e+02 1.549
83.7100413 -5.2677813 0.0459 0.0454 -0.0075 11.027 0.031 35.1 6.971e+01 10.111 0.026 42.3 5.271e+01 5.420
83.8271706 -5.2273263 0.0375 0.0355 -0.0062 7.895 0.023 46.4 4.054e+00 6.788 0.021 50.8 2.838e+00 2.740
83.9080061 -5.2837556 ©.1267 ©.1552 0.0327 9.560 0.041 26.7 5.575e+01 8.845 0.032 33.7 8.884e+01 3.942
83.6915582 -5.28621@03 ©.4911 0.5632 -0.0337 13.153 0.218 5.0 7.119e-01 12.495 0.297 3.7 4.186e-01 6.527
83.9175014 -5.2913937 9.0833 0.0837 -0.0182 8.373 0.025 43.4 5.163e+00 8.037 9.023 46.7 9.326e+00 4,908
83.7463179 -5.2829033 0.0778 0.0797 -0.0148 10.622 0.039 28.0 3.472e+01 9.838 0.045 24.9 1.680e+01 4.864
83.7425446 -5.2746263 ©.0989 0.0896 0.0174 10.648 0.083 13.1 1.587e+01 9.702 0.077 14.1 1.345e+01 4.174
83.7708001 -5.2436324 0.0657 0.0735 -0.0147 11.421 0.043 25.3 1.712e+01 10.554 0.036 29.9 2.874e+01 5.232
83.8016153 -5.2468494 0.0278 0.0301 -0.0098 12.052 0.268 4.0 1.145e+00 10.465 0.062 17.4 9.438e+00 2.948
83.7457415 -5.2789042 0.0813 0.0916 0.0229 11.069 0.082 13.2 1.03%e+01 10.253 9.186 5.8 1.357e+00 4.270
83.7751275 -5.2531046 ©.0373 0.0508 -0.0061 13.208 null 1.3 8.463e-01 12.246 0.118 9.2 1.573e+00 7.360
83.7702991 -5.2322746 ©0.2134 0.1827 -0.0976 11.126 0.484 2.2 2.788e-01 9.990 9.293 3.7 6.851e-01 4.615
83.8118085 -5.2296894 0.0029 0.0030 0.0002 11.183 0.055 19.7 2.824e+01 9.953 0.028 38.4 5.837e+01 -3.061
83.7752013 -5.2505706 ©.3602 ©.3792 -0.0746 11.891 null -0.2 2.274e-01 10.724 null 1.2 2.015e-01 6.372
83.9433765 -5.2819869 ©.1424 0.1600 -0.0467 13.287 0.064 16.9 1.391e+01 12.055 0.084 12.9 7.548e+00 6.932
83.8023339 -5.2759337 0.0667 0.0681 -0.0171 8.662 0.032 33.6 7.157e-01 7.713 9.033 32.5 6.871e-01 6.419
83.7755789 -5.2402156 ©0.0480 0.0494 -0.0163 10.832 0.074 14.6 4.059e+00 9.859 0.037 29.3 1.654e+01 5.230
83.7716738 -5.2473053 0.0351 9.0335 0.0010 6.794 0.035 30.6 1.903e+00 6.625 9.019 56.1 1.346e+00 4.727
83.8851734 -5.3111535 ©.1242 9.1110 -0.0408 9.914 0.039 27.8 1.154e+02 9.817 0.060 18.1 4.717e+01 3.749
83.7690990 -5.2410817 ©0.6554 0.0619 -0.0147 11.296 0.036 30.5 3.522e+01 10.571 0.034 31.8 2.437e+01 5.479
83.7981526 -5.2418722 ©0.1046 ©0.1116 -0.0355 12.473 0.263 4.1 1.437e+00 11.481 9.158 6.9 3.372e+00 4.096
S 2604212 20514 20548 0 0107 10 4410 026 2 et 20200 10 027 o Q35 228l 2222400 £ _A04

30

IPAC tables in python

e Use astropy and ascii table

Astropy v0.4.dev9234 » ASCII Tables (astropy.io.ascii)

Page Contents
ASCII Tables
(astropy.io.ascii)
* Introduction
* Getting Started
* Reading Tables
* Writing Tables
* Supported formats
* Using astropy.io.ascii
* Reading tables
* Writing tables
« Fixed-width Gallery
* Base class elements
* Extension Reader classes
* Reference/API
« astropy.io.ascii Module
* Functions
* Classes
« Class Inheritance Diagram

ASCII Tables (astropy.io.ascii)

Introduction

astropy.io.ascii provides methods for reading and writing a wide range of ASCII data table formats via built-in
Extension Reader classes. The emphasis is on flexibility and ease of use.

The following shows a few of the ASCII formats that are available, while the section on Supported formats contains the
full list.

* Basic: basic table with customizable delimiters and header configurations
e (Cds: CDS format table (also Vizier and ApJ machine readable tables)
Daophot : table from the IRAF DAOphot package

FixedWidth : table with fixed-width columns (see also Fixed-width Gallery)
Ipac: IPAC format table

Latex: LaTeX table with datavalue in the tabular environment

Rdb : tab-separated values with an extra line after the column definition line
SExtractor : SExtractor format table

The astropy.io.ascii package is built on a modular and extensible class structure with independent Base class
elements so that new formats can be easily accommodated.

It is also possible to use the functionality from astropy.io.ascii through a higher-level interface in the
astropy.table package. See Unified file read/write interface for more details.

Getting Started

Reading Tables

The majority of commonly encountered ASCII tables can be easily read with the read() function. Assume you have a
file named sources.dat with the following contents:

obsid redshift X Y object
3102 0.32 4167 4085 Q1250+568-A
877 0.22 4378 3892 "Source 82"

This table can be read with the following:

>>> from astropy.io import ascii
>>> data = ascii.read("sources.dat")

31

astropy ASCII tables

e http://www.astropy.org/

 Follow instructions on the website to install it
for your OS and hardware combination

astropy tables

The ascii.read() call will produce a data
structure build upon the numpy ndarray.

It is called astropy Table
Very useful for astronomy work

Can write to various formats (including LaTeX
for publication tables).

DEMO READ WISE TABLE

