Programming with Python 4

NITARP 2013: SHIPs
Babar Ali

Python on SHIPs 4

Topics

Input from text files
Output to text files and screen.
Try, except blocks and error handling

Functions & Libraries

INPUT

Files on disk

* We will focus on ASCII (as opposed to binary) files here.

e Libraries (such as numpy) add significantly easier to use
functions to handle files than core python.
* Try to use them.
 The following lines of code show one way to read the file. We
will expand on each command.

Basic code:

>>> file = “/Users/babar/file.txt” # Tell python which file.

>>> ou = open(file,’r”) # Have python “open” the file for access.
>>> |ine=ou.readline() # Read the first line from our file.

>>> ou.close() # Close the file. No more access.

>>> print line # Print what we just read.

A detailed look

>>> file = “/Users/babar/file.txt”

 The string variable ‘file’ is used to define the full directory path and name
of the ASCII text file.

* If you don’t tell python / spyder the full pathname, it will use the current
working directory.

* Since, you may not always remember or wish to use a directory different
than the current working directory, it is best

* Always define the full path name so there is no ambiguity.

* If you plan to use the same directory for access to many files and for
output, also define the directory in a separate variable.

>>> dirname = “/Users/babar/”
>>> filel = dirname+“Jphot.txt”
>>> file2 = dirname+“Kphot.txt”

A detailed look (cont.)

>>> ou = open(file,’r”)

This line calls a core python function ‘open’ and gives it two arguments:
» “file” is the variable that is pointing to the file we wish to use.
» “r” tells python to read from the file.

You can specify the file name directly instead of first defining it as a string.
e But, take care to put quotes around the name.

Here is what else you can tell python to do with files instead of “r”ead:

» “w” tells python you wish to write to a file. If the file already exists, it will be
deleted first and recreated. So, be careful. Its an easy mistake to wipe out
existing file.

» “a” tells python to append to an existing file.
Once opened, the file will stay opened until closed.

The variable ‘ou’ contains the link to the opened file. You need it to access
the linked file.

a_n
r

What to do with ‘line’?

e Recall: we stored the first line in a variable called ‘line’.

* Thisis a string variable and can be manipulated just like any
other string variables.

* For file I/O in particular, the following provide some useful
functions:

>>> line.strip() # Remove the trailing ‘\n’ end of line character as well as spaces.
>>> line.split() # Split the contents of the line using space ‘ ‘ as the delimiter.
>>> line.split(9) # Same as above, except use comma ‘ as delimiter.

Example:
>>> line = “100 34.2345 -5.23441” # Thisis our line.
>>> line.split() # produces the following output

[100’, ‘34.2345’, -5.2344’, ‘1’]
>>> # A string vector with four values — the original 4 numbers in the line separated by
space ‘

oy siion i o

For more help

* http://pythondastronomers.github.io/files/
asciifiles.html

A more complete example

* Read and parse a text file containing 5 columns and two header
line.

>>> # Our input file looks like this:

>>>H#ID, ra, dec, flux, comments

>>># , (deg), (deg), (mly),

>>>#1,35.2345 ,-5.1234 , 100.0, There s a bright filament nearby.
>>>#2,35.5436 ,-5.5567 , 120.0,

>>>#3,35.8934 ,-5.9832 , 150.0, Part of a binary pair.
>>>#4,36.52 ,-6.1654 , 102.0, Value is from Scott.
>>> ju=open(myFile,”r”)

>>> headerl=ou.readline()

>>> header2=ou.readline()

>>>id =]

>>>ra = (]

>>> dec =[]

>>> flux = []

>>> comment =[]

>>> line=ou.readline()

Example continued.

“un,

>>> while linel=“":

>>>
>>>
>>>
>>>
>>>
>>>
>>>

words = line.split(")
id.append(int(words[0]))
ra.append(float(words[1]))
dec.append(float(words[2]))
flux.append(float(words[3]))
comment.append(words[4])
line=iu.readline()

>>> ju.close()

Using numpy

* numpy provides two functions to read ASCII files. We will
use genfromtxt

* Functions automatically perform a number of the steps.

e This makes programming simpler to understand and less
prone to errors.

Our complete example, now in numpy:

>>> import numpy as np

>>> data = np.genfromtxt(myFile, dtype=(‘i’/f’/f’/f’/S20’),\
names="id,ra,dec,flux,comment”, \
skip_header=3, usecols=(0,1,2,3,4),delimiter=",")

A closer look at numpy genfromtxt

myfFile is the name of the file to read from.

dtype specifies the type of data. One per column,
in parenthesis and quotes, as shown.

names tells python what name to use for each

column.
e NOTE: Not related to names in file itself.

skip_header = tells how many header lines to
skip.

usecols says read data from these columns.
delimiter= tells what separates data columns

The output

data contains data on all columns and
accessed by the assigned name.

C

C
C
C
C

ata
ata
ata
ata
ata

:Ilidll:
"ra"][0] # The first element of ra
:lldecll:
:Ilﬂuxll:

"comments']

All elements of id

0:2] # The first & 2" element

] # All elements of flux

The output (cont.)

* |f names was omitted during the call, the
default name of the columns is used.

» The default name is 'f#', where # stands for 0, 1, 2,
3....

* The extracted columns in the output are
numpy arrays of the type specified in dtype.

* For example, data["id"] is a numpy integer array.

What else can you do with genfromtxt?

comment="#" Treat the row/line as a comment If the line begins with
whatever character is specified in quotes. In this case, '#'.

autostrip=0 or Whether to strip white spaces from the variables. 1=yes,
autostrip=1 O=no.
skip_footer= The number of lines to skip at the end of the file.

Python on SHIPs 4 15

OUTPUT

Output is just as easy

We have already seen
print
Which prints to the screen.
Now we will use it to print to a file.

Basic code:

>>> file = “/Users/babar/output.txt” # Tell python which file.

>>> ou = open(file,”w”) # Have python “open” the file for access.
>>> print >>ou, "Hello File" # Read the first line from our file.

>>> ou.close() # Close the file. No more access.

Python on SHIPs 4 17

A detailed look

>>> file = “/Users/babar/output.txt”

e Asfor input, the string variable ‘file’ is used to define the full
directory path and name of the ASCII text file.

* |f you don’t tell python / spyder the full pathname, it will use the
current working directory.

e Since, you may not always remember or wish to use a directory
different than the current working directory, it is best

* Always define the full path name so there is no ambiguity.

A detailed look (cont.)

>>> ou = open(file,”w”)

This line calls a core python function ‘open’ and gives it two
arguments:

> “file” is the variable that is pointing to the file we wish to use.
> “w” tells python to write to the file.

* You can specify the file name directly instead of first defining it as a
string.
e But, take care to put quotes around the name.
* You can also use:
» “a” to append to an existing file.
* Once opened, the file will stay opened until closed.

 The variable ‘ou’ contains the link to the opened file. You need it to
access the linked file.

Writing to the file

>>> print >>ou, "Hello File"

e Use the normal python print statement to
write to the file.

e The >>ou construct added to the print
simply tells it to redirect the result of the
printing to ou.

e All formatting rules for printing apply here as
well.

Full example

>>> # Using data read earlier in variable data with numpy’s genfromtxt
>>> ou=open(myOutputFile,”w”)
>>> print >>ou, “This is a header line”
>>> print >>ou, “This is another header line”
>>> nlines = len(data[“id”])
>>> for i in range(nlines):
print >>ou, “%4i, %8.3f, %8.3f, %8.3f, %s” % (data[“id”][i], data[“ra”][i], \
data[“dec”][i], data[“flux”][i], data[“comment”][i])
>>> ou.close()

Using numpy:

>>> import numpy as np
>>> np.savetxt(myOutputFile,data,fmt="%4i %8.3f %8.3f %8.3f %s”,delimiter="",\
header=“This is first line\nThis is 2" line”, comments="#")

CATCHING ERRORS

Try and if fail then do something else

>>> # python allows a way to catch errors and/or problems:
>>> try:
commandl # Run some commands.
command?2
>>> except Exception, e:
print “Your commands did not work. Here is why, maybe”
print e.message

The try, except syntax allows you to test the execution of any command. If any of the
commands in the try: block generates a python error, then the statements under the
except: block are executed.

Generally, you put “safe” print statements in the except block to let you figure out
what may have happened, but there are always exceptions.
YES: if you have an error in the except block, you may crash the program.

FUNCTIONS

The basic building blocks of code

* Functions:
» Execute a set of instructions when called.
» Tidy up code by modularizing it.

» Should always be used when the same algorithms
(with slight parameter differences) are repeated.

* Alibraryis a set of themed functions. E.g.
numpy for numerics-related python functions

def:ining Functions.

>>> # Creating a function is easy.

>>> def myFunction(input,optionA=1,optionB=2):
commandl # Run some commands.
command?2
return result

The def statement tell python we are defining a function.

The name of the function follows def call.

Mandatory input parameters are specified without the = syntax.

Optional parameters use the = syntax, where the value to the right of = is the default
value, if no other value is specified.

Commands are indented.

The return statement returns the result. Please return only one variable or value. We
will encounter how to return multiple values later.

A simple example.

>>> # A function to perform .
>>> def myMathTool(a,b,operation="+"
if operation=="+":
result = a+b
elif operation==
result = a-b
elif operation==
result = a*b
elif operation=="/":
if b!=0.:
result = a-b
else:
print “I will not divide by 0. You should know better”
print “returned value is 0”
result=0
else:
print “Operation not understood “+operation
print “returned value is 0”
result=0
return result

“u n,
- .

Uy,

Executing functions

* |nspyder:
» Read or edit your function in the editor,
» Then choose ‘Run’ to define it.

e Command line python
» execfile(“/path/fileWithFunction.py”) defines the function.

* simply call the function by its name and the
parameters, if needed.

>>> # Creating a function is easy.
>>> myMathTool(10.,20.,operation="/")
>>> ¢ = myMathTool(10.,201.,0operation="*")

