Coherent ideas of what to do with these pieces

From CoolWiki
Jump to navigationJump to search

Think of these as "Lego kits" to build .. you may need to go seek out the appropriate "Lego bricks" from the rest of the wiki (listed on each page) to supplement your skills in order to build these Lego kits.

Simpler

Literature: Observation and Inference

Resolution Skills includes links to resolution worksheets by Dr. Luisa Rebull (see Measuring resolutions and the Resolution worksheets linked near the bottom of the Resolution Skills page). The most recent worksheets include some of the more general information on resolution, as well as sources specific to regions we were studying in those years. Similar worksheets could be developed for any given region.

Measuring distances on images - includes link to activity Finding the velocity of a high-proper-motion star in IC2118‎‎

Dustier, Messier Messier Marathon - explore what different kinds of objects look like in the visible as compared to the IR.

Gliese Catalog Explorations - things to do with nearby stars


things after this point need to be copied, updated, generated ab initio, etc.

3-color image where your own image is one of hte planes (astrometry.net if need be)

from a list of the ~500 closest stars, get Gaia, correct mags to get abs mag, get optical CMD (HRD). Extension: get 2MASS, WISE for same list. Make CMD. Why is it different? what different information is it telling you?

get list of cluster members. pull Gaia and 2mass and wise. make CMDs. get relative ages and disk fractions.

Making CMDs/color-color diagrams and color selection - Taurus catalog has a catalog of legitimate young stars. Use this catalog to devise your own color selection approach to find young stars. Where do these objects fall with respect to either the Gutermuth or Koenig colors? Which ones would be retrieved or lost by these color selections? Would your method work if your catalog had a mixture of young stars and field stars?

find rotation periods for set of K2 LCs - throw in periodic/not, noisy/not, sinusoidal/not, single/multi period, EBs

Harder

  • IC2118 project
  • CG4 project
  • Li-rich giants project


People want *anything* having to do with black holes. AGN light curves?

bookmarked from before

wise lesson plans?

SOFIA lesson plans?

Kepler lesson plans?

oh, god, all the "working with" pages from all my summer teams up to a few years ago.

Misc. Lesson Plans, Activities, and Useful Websites Please feel free to contribute. We do ask that you include your wiki signature (click on the username/date stamp button in the edit window) when submitting lesson plans and activities. This will help users of the site in the event they have questions. Also, when posting a website, please provide a brief description of the site along with the web link.


Future Research Project Ideas Here is a place to explore future research project ideas.


Now what? So you've finished your year of NITARP and are looking for what's next...


Vandana's brainstormed list

xx just sent me this page, which should have a syllabus: https://sites.google.com/a/siena.edu/observational-astronomy/

Some ideas:

  • She has a lab about CCDs. Might be interesting to show how IR data collection is different.
  • How do observing strategies in the IR differ from observing strategies in the optical?
  • Optical measurements of SFRs can miss a lot of the action.
  • The resolution in the IR is different than the optical. What should the resolution of Spitzer be? Go get the images. Measure the PSF. Did you get what you expected? (this one met by above materials)
  • How does a galaxy's morphology depend on resolution?

I wonder if JWST already has tutorials like these? I'm focusing on galaxies because I'm assuming the NITARP ones focus more on stars? I need to look! In general, she's not that interested in teaching her students HOW TO GET DATA. That part should be incidental to the topics above, which she said would be the kind of thing she wants them to learn. Her link also includes a link to courses at other schools: https://sites.google.com/a/siena.edu/observational-astronomy/lab-resources/courses-at-other-schools

  • Showing that stars are blackbodies? Except when they're not!
  • Something about coordinate systems?
  • Making color images that actually tell you the colors of stars?
  • Comparing constellations with actual astronomical images?
  • Planning an observing run, making a finder chart.

This professor actually teaches the Aladin interface explicitly: https://web.njit.edu/~gary/322/